

Oxford **Mathematics**

Primary Years Programme

Contents

australia & new zealand

NUMBER, PATTERN AND FUNCTION		MEASUREMENT, SHAPE AND SPACE	
Unit l Number and place value		Unit 5 Using units of measurement	
1. Place value	2	l. Length	86
2. Square numbers and triangular numbers	6	2. Area	90
3. Prime and composite numbers	10	3. Volume and capacity	94
4. Mental strategies for addition and subtraction	14	4. Mass5. Timetables and timelines	98 102
5. Written strategies for addition	18		102
6. Written strategies for subtraction	22	Unit 6 Shape	
7. Mental strategies for multiplication		1. 2D shαpes	106
and division	26	2. 3D shapes	110
8. Written strategies for multiplication	30	Unit 7 Geometric reasoning	
9. Written strategies for division	34	l. Angles	114
10. Integers	38	1. Aligles	114
11. Exponents and square roots	42	Unit 8 Location and transformation	
Unit 2 Fractions and decimals		1. Transformations	118
l. Fractions	46	2. The Cartesian coordinate system	122
Adding and subtracting fractions	50		
3. Decimal fractions	54	DATA HANDLING	
4. Addition and subtraction of decimals	58		
5. Multiplication and division of decimals	62	Unit 9 Data representation and inter	pretatio
6. Decimals and powers of 10	66	1. Collecting, representing and	
7. Percentage, fractions and decimals	70	interpreting data	126
-		2. Data in the media	130
Unit 3 Ratios		3. Range, mode, median and mean	134
1. Ratios	74	Unit 10 Chance	
Unit 4 Patterns and algebra		1. Describing probabilities	138
1. Geometric and number patterns	78	2. Conducting chance experiments and	
2. Order of operations	82	analysing outcomes	142
OXFORD UNIVERSITY PRESS		Glossary Answers	146 156

UNIT 1: TOPIC 1 Place value

Working with very large numbers

Large numbers have a gap between each set of three digits.

837452691 is easier to read if we write 837 452 691. It also makes it easier to say the number:

eight hundred and thirty-seven million, four hundred and fifty-two thousand, six hundred and ninety-one

Guided practice

1 Look at this number: 5 367 918
Show the value of each digit on the place-value grid.

Millions	Hundred thousands		Thousands	Hundreds	Tens	Ones	Write the number using gaps if necessary
5	0	0	0	0	0	0	5 000 000

2 If we write nine hundred and five thousand, four hundred and seventy-six in digits, we use a zero to show there are no tens of thousands:

Remember to use a zero as a space-filler.

905 476

Write as digits:

- a fifty-one thousand, six hundred and four
- b two hundred thousand and twenty-six
- twelve thousand and ten

Independent practice

1	Wha	at is the value o	f the red digit?			
	a	4 6 3 290		b	6 3 29 477	
	C	2 406 219		_ d	5 <mark>1</mark> 385 067	
	е	8 0 487 003			3 5 1 000 819	
2	Writ		from question 1 in v			
	a					
	b					
	С					
	d					
	е					
	f					
3	Writ	e these numbe	rs as digits.			
	a	eighty million, eighty-seven t	four hundred and housand	b		ee hundred and sand and fifty-nine
	C		nd fourteen million, I and sixty thousand and nine	d l,		r hundred million, nd ninety-three one

OXFORD UNIVERSITY PRESS

Expand these numbers. The first one has been done for you.

Remember to use spaces between the digits where necessary.

a 374 596: 300 000 + 70 000 + 4000 + 500 + 90 + 6

b 214 867: **200 000 +**

c 2 567 321: _____

d 5 673 207: _____

e 57 319 240:

f 407 508 004: _____

5 Look at these digit cards.

7 3 4 5 9 1 2

a What is the **largest** number that can be made using all the cards?

b What is the **smallest** number that can be made if the digit "5" is in the millions place?

what is the **largest** number that can be made if the "7" is seven ones?

d What is the **smallest** number that can be made if the "1" is in the tens of thousands place?

6 Write the number shown on each spike abacus as digits and in words.

a

b

digits:

words:

digits:

words:

Extended practice

2 Sometimes large numbers are abbreviated. \$1K means \$1000. \$1.3M can be used for \$1300000. Write the new price of these houses using digits **in full**.

- **a** \$345K reduced by \$5000 _____
- **b** \$725K reduced by \$20 000 _____
- **c** \$875K reduced by \$50K _____
- d \$1.5M reduced by \$250K _____

Imagine you have to choose just **one** digit in each of these numbers. Write:

- the digit you would choose
- the value of the digit
- the reason for your choice.
- a A share of \$574 612. ___

b Writing out your times tables 574 612 times.

c Eating 574 612 of your favourite snack food in 10 minutes.

UNIT 1: TOPIC 2

Square numbers and triangular numbers

Numbers can be arranged in patterns

4 is a square number.

3 is a triangular number.

Guided practice

3

1

$$1 + 2 = 3$$

Independent practice

1 Complete the grid to show the first ten square numbers. Write the information as you did on page 10.

What is the next number in the square number pattern?

b How does the digit in the ones column change in the square number pattern?

c Circle one answer. The 100th square number is:

100 1000 10 000 100 000

Extended practice

1 Continue this table.

	Multiplication fact	Addition fact
$1^2 = 1$	1 × 1 = 1	1
$2^2 = 4$	$2 \times 2 = 4$	1 + 3 = 4
$3^2 = 9$	$3 \times 3 = 9$	1 + 3 + 5 = 9
$4^2 =$		
$5^2 =$		
6 ² =		
$7^2 =$		
8 ² =		
$9^2 =$		
10 ² =		

- 2 a What do you notice about the way the addition facts grow in question 1?
 - **b** Write the facts for the 11th square number.
 - c How many would you add to the 11th square number to find the 12th square number?
- This pattern shows the first few pentagonal numbers.

a One of the numbers in this list is **not** a pentagonal number. Which number is it?

5, 12, 15, 22, 35

- **b** Write the first 5 pentagonal numbers.
- c Write an explanation that would help a younger student to understand the connection between each pentagonal number and the one that follows it.
- d On a separate piece of paper, draw a diagram of the 6th pentagonal number.

UNIT 1: TOPIC 3

Prime and composite numbers

How do we recognise a prime number?

We say a number is *prime* if it has just two factors: 1 and itself. The number 2 is the smallest prime number because it can only be divided by 1 and 2. Numbers that have more than two factors are called *composite* numbers.

A prime number has just 2 factors.

A composite number has more than 2 factors.

Guided practice

1 Complete this chart.

1 only has one factor, so it is neither a prime number nor a composite number.

Number	Factors	How many	Prime or composite?			
	(numbers it can be divided by)	factors?	Prime	Composite		
1	1	1	nei	ther		
2	1 and 2	2	✓			
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

2

a List the prime numbers between 2 and 20.

b Comment on the number of even prime numbers.

Independent practice

1 Follow these instructions to complete the grid. The grid has been started for you.

71. 71.	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- a 1 is neither prime nor composite. Draw a star around it.
- b 2 is a prime number. Circle it.
- c Lightly shade all the multiples of 2. They are composite numbers.
- d Put a circle around the next prime number: 3
- e Lightly shade all the multiples of 3. They are composite numbers.
- f Put a circle around the next prime number: 5
- g Lightly shade all the multiples of 5. They are composite numbers.
- h Find the **next** prime number. Circle it.
- i Lightly shade all its multiples.
- Repeat Step h and Step i until you get to the end of the grid.
- 2 a The highest prime number on the grid is:
 - b True or false? All the prime numbers are odd.
 - c True or false? More of the composite numbers are even than odd.

All composite numbers are made by multiplying prime numbers. 6 is a composite number. It can be made by multiplying 2 prime numbers: 2 × 3.

We can show it in a factor tree:

The prime factors of 6 are 2 and 3. So $6 = 2 \times 3$

Prime factors are two or more prime numbers that are multiplied together to make a composite number.

Fill in the gaps:

a The prime factors of 10 are

The prime factors of 9 are

b

е

h

The prime factors of 15 are

C

f

d The prime factors of 21 are

The prime factors of 35 are

The prime factors of 39 are

g The prime factors of 26 are

The prime factors of 33 are

The prime factors of 34 are

4 Draw factor trees for:

a 14

c 49

Extended practice

The prime factors of 8 are 2, 2 and 2. To show the prime factors of 8, we can write $2 \times 2 \times 2$. We can also write 2^3 .

Fill in the gaps.

 $20 = 2 \times 2 \times$ 20 = 2

18

b 18 = .

28 = _

d

Draw factor trees to show the prime factors.

27

30

24